Persian  |  Ahvaz Jundishapur University of Medical Sciences
 
Username
Password
Register
I forgot my password

Journals Office: 2nd floor, School of Medicine Ahvaz Jundishapur University of Medical Sciences, Golestan BLV, Ahvaz - IRAN
Postal Code: 6135715794
Phone: +98-61-33738283
Fax: +98-61-33362537

Home :: Back

Advance Article Search New

jundishapur Sci Med J: 15(6); 2017; Jan-Feb: Current Issue
Article title: Effect of the Incident Photon Energy and the Thickness of the tungsten Target on the Efficiency of Photoneutron Production for the Treatment of Cancer Patients

Article File:  Article(PDF) 846 Kb 
Page From: 677 To: 684      
Visit: 768

Abstract
Background and Objective: Nowadays boron neutron capture applies as an alternative method to treat some cancers which do not respond to traditional radiation therapy. Considering that the epithermal neutron energy are useful for therapeutic purposes, achieve the maximum flux of the epithermal neutron has always been concerned. The aim of this study was to evaluate the effect of the converter thickness and the photon energy incident on the neutron flux output and energy generated. Materials and Methods: In this study, using Monte Carlo simulation MCNPX6.2 code, a single pencil photon beam with energies 13, 15, 18, 20, 25 MeV and 2 mm diameter were employed. To optimize the design of the photoneutron target, tungsten target was tested at different thicknesses. Results: The maximum of the neutron flux for all thicknesses and beam energy occurred at neutron energy peak 0.46MeV. Increasing thickness up to 2 cm showed the neutron flux was increased with increases in thickness and followed a downward trend. Conclusion: The photon energy and the thickness of the tungsten target have a significant impact on the total neutron energy, energy spectrum and the average energy neutrons which depending on the neutron energy spectrum required should be selected. The use of a tungsten layer with a thickness of 2 cm and the 15MeV photon energy for production of maximum neutron flux with a minimum average energy is suggested. ►Please cite this paper as: Chegeni N, Boveiry Pour S, Razmjou-Ghalaei S, Goli Ahmadabadi F. Effect of the Incident Photon Energy and the Thickness of the Tungsten Target on the Efficiency of Photoneutron Production for the Treatment of Cancer Patients. Jundishapur Sci Med J 2016;15(6):677-684.

Keywords:
radiotherapy, BNCT, photo neutron target

Article Authors:
Nahid ChegeniFirst Authorchegenin@gmail.com
Saleh Boveiry pourOther Authorsaleh.Boveirypoorgmail.com
Sasan Razmjoo GhalaeeOther Author
Foad GoliAhmadabadiOther Authorgoli.ahmadabadyahoo.com

References
1-Fawzy FI, Fawzy NW, Arndt LA, Pasnau RO. Critical review of psychosocial interventions in cancer care. Archives of general psychiatry. 1995;52(2):100-13.
2-Al-Sarraf M, LeBlanc M, Giri P, Fu KK, Cooper J, Vuong T, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. Journal of Clinical Oncology. 1998;16(4):1310-7.
3-Ries LAG, Melbert D, Krapcho M, Stinchcomb D, Howlader N, Horner M, et al. SEER cancer statistics review, 1975–2005. Bethesda, MD: National Cancer Institute. 2008:1975-2005.
4-Coderre JA, Morris GM. The radiation biology of boron neutron capture therapy. Radiation research. 1999;151(1):1-18.
5-Chadha M, Capala J, Coderre JA, Elowitz EH, Iwai J-i, Joel DD, et al. Boron neutron-capture therapy (BNCT) for glioblastoma multiforme (GBM) using the epithermal neutron beam at the Brookhaven National Laboratory. International Journal of Radiation Oncology* Biology* Physics. 1998;40(4):829-34.
6-Slatkin DN. A history of boron neutron capture therapy of brain tumours. Brain. 1991;114(4):1609-29
7-Torabi F, Masoudi SF, Rahmani F, Rasouli FS. BSA optimization and dosimetric assessment for an electron linac based BNCT of deep‐seated brain tumors. Journal of Radioanalytical and Nuclear Chemistry. 2014;300(3):1167-74.
8-Barth RF, Coderre JA, Vicente MGH, Blue TE. Boron neutron capture therapy of cancer: current status and future prospects. Clinical Cancer Research. 2005;11(11):3987-4002.
9-Barth RF, Soloway AH, Fairchild RG. Boron neutron capture therapy of cancer. Cancer Res. 1990;50(4):1061-70.
10-Sweet WH. Early history of development of boron neutron capture therapy of tumors. Journal of neuro-oncology. 1997;33(1-2):19-26.
11-Wang C-KC, Blue TE, Gahbauer R. A neutronic study of an accelerator-based neutron irradiation facility for boron neutron capture therapy. Nuclear Technology. 1989;84(1):93-107.
12-Gahbauer R, Gupta N, Blue T, Goodman J, Barth R, Grecula J, et al. Boron neutron capture therapy: principles and potential. Fast Neutrons and High-LET Particles in Cancer Therapy: Springer; 1998. p. 183-209.
13-Kononov O, Kononov V, Bokhovko M, Korobeynikov V, Soloviev A, Sysoev A, et al. Optimization of an accelerator-based epithermal neutron source for neutron capture therapy. Applied radiation and isotopes. 2004;61(5):1009-13.
14-Torabi F, Masoudi SF, Rahmani F. Photoneutron production by a 25MeV electron linac for BNCT application. Annals of Nuclear Energy. 2013;54:192-6.
15-Rorer D, Whitmore WG, Zamenhof H. Current Status of neutron capture therapy. IAEA, 20o1 (8). 2001:75-7.




کلیه حقوق این سایت متعلق به دانشگاه علوم پزشکی جندی شاپور اهواز می باشد. استفاده از مطالب این سایت با ذکر نام سایت مجاز می باشد   -   Copyright © 2012
Powered By www.itpco.net
تولید کننده سیستم های تخصصی مدیریت نشریات و همایش ها و مورد تائید وزارت بهداشت درمان و آموزش پزشکی و وزارت ارتباطات و فناوری اطلاعات و